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Abstract

Objective: The lack of accurate biomarkers to predict knee osteoarthritis (OA) progression is a 

key unmet need in the OA field. The objective of this study was to develop baseline peripheral 

blood epigenetic biomarker models to predict knee OA progression.

Methods: Genome-wide buffy coat DNA methylation patterns from the Osteoarthritis 

Biomarkers Consortium (OABC, n=554) were determined using Illumina MethylationEPIC arrays. 

Data were divided into development and validation sets and machine learning models were trained 

to classify future knee pain, radiographic, dual (pain + radiographic), and any (pain, radiographic, 

or dual) progression. Parsimonious models, using the top 13 CpGs most frequently selected 

during development, were tested on independent samples from participants in the Johnston County 

Osteoarthritis Project (JoCoOA, n=141) and a previously published Osteoarthritis Initiative dataset 

(OAI, n=54).

Results: Full models accurately classified future radiographic (accuracy 87±0.8%, 

AUC=0.94±0.004, mean±SEM), pain (89±0.9%, 0.97±0.004), dual (72±0.7%, 0.79±0.006), and 

any progression (78±0.4%, 0.86±0.004). Pain-only and radiographic-only progressors were 

not distinguishable (accuracy 58±1%, AUC=0.62±0.001). Parsimonious models showed similar 

performance and accurately classified future radiographic progressors in OABC and in both 
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validation cohorts (JoCoOA: accuracy 80±0.3%, AUC=0.88±0.003, OAI: accuracy 80±0.8%, 

AUC=0.89±0.002).

Conclusions: Herein, we developed peripheral blood-based DNA methylation models to predict 

knee OA progression in the OABC cohort and validated our findings in two independent cohorts. 

Our data suggest that pain and structural progression share similar early systemic immune 

epigenotypes. Further work should focus on evaluating the pathophysiological consequences of 

differential DNA methylation and peripheral blood cell epigenotypes in individuals with knee OA.

Graphical Abstract

Introduction:

Osteoarthritis (OA) is the leading cause of chronic disability in the United States and among 

the most rapidly rising disability-associated medical conditions worldwide (1,2). Despite 

its widespread impact, neither the US Food and Drug Administration nor the European 

Medicines agency have yet approved any disease-modifying drug therapy for OA, although 

several agents are in late-stage clinical trials (3,4). One of the largest obstacles encountered 

in OA clinical trial design is the unpredictable nature of disease progression. Only a 

small minority of patients (~4–8%) will experience radiographic progression within 4 years 

(5,6), the median length of Phase 3 clinical trials in the US (7). Therefore, enriching OA 

clinical trial populations in individuals likely to experience rapid radiographic and/or pain 

progression will be critical to accelerate OA drug development and advance personalized, 

precision-guided OA therapies.

A number of recent studies have sought to identify biomarkers for prediction of rapid OA 

progression. The largest of these, the Foundation for the National Institutes of Health OA 

Biomarkers Consortium (OABC), performed an analysis of serum- and urine-protein and 

radiographic biomarkers using a nested case-control design in a subset of 600 patients 

from the Osteoarthritis Initiative cohort (8–12). Using multivariable analysis, Kraus and 

colleagues developed a model predictive of both pain and radiographic progression using 

baseline blood and serum markers with a receiver operator characteristic area under the 

curve (AUC) of 0.586 (8). Using a 24-month time-integrated concentration measure, based 

on the change in biomarker levels over 24 months to predict the subsequent 24 months, 

models improved to AUC=0.618 using 10-fold cross-validation. Other recent studies have 

also identified baseline radiographic characteristics that can predict future rapid radiographic 
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progression, including periarticular bone area (10), and 24-month change in effusion- and 

Hoffa-synovitis, meniscal morphometry, and cartilage thickness/surface area (AUC=0.740) 

(11). Additionally, a multivariable modeling analysis in the OABC has been performed, 

combining both radiographic and biochemical time-integrated concentration biomarkers that 

yielded an AUC of 0.712–0.832 to predict future radiographic progression (13).

A drawback of these biochemical and radiographic biomarker approaches is their inherent 

variability; that is, the best predictive capability comes from models integrating biomarker 

change over time rather than baseline values. By contrast, epigenetic patterns are among 

the first biological changes in disease pathogenesis, as an appropriately modified chromatin 

microenvironment is required prior to the expression of disease-associated gene transcripts. 

Additionally, epigenetic patterns are relatively stable over time (14), suggesting that single-

timepoint (baseline) epigenetic assays may reflect disease-associated changes earlier than 

traditional protein-based approaches. Several studies, including our own, have demonstrated 

epigenetic changes in OA joint tissues (15–19). Furthermore, in 2019 our group published 

a pilot study where we developed peripheral blood DNA methylation-based models to 

predict future radiographic progression in a small cohort of participants (n=116) from the 

Osteoarthritis Initiative, yielding a mean accuracy of 73% and AUC=0.81 for prediction of 

progression within 48 months based on a single-timepoint baseline blood draw (20). In the 

present study, we sought to expand upon these data by developing and validating peripheral 

blood DNA methylation-based machine learning models to predict future radiographic 

and/or pain progression in the larger OABC cohort, allowing us to directly compare our 

outcomes with previous Foundation for the NIH biomarker projects. Additionally, we sought 

to validate our results in two independent cohorts, the Johnston County Osteoarthritis 

Project (JoCoOA) and our previous Osteoarthritis Initiative epigenetic biomarker data.

Methods:

Study Design, DNA methylation quantitation

Samples for initial model development were obtained from the OABC (21), a 

subset of the Osteoarthritis Initiative, including radiographic-only, pain-only, and ‘dual’ 

pain+radiographic progressors, with matched non-progressor controls. Although the OABC 

consists of a total of 600 patients, 46 samples were removed from our final analysis due 

to low DNA concentration or low-quality DNA methylation data. Our final discovery 

cohort consisted of 554 individuals, representing 193 dual (pain + radiographic), 91 pain-

only, 81 radiographic-only progressors and 189 non-progressor controls. The validation 

cohorts consisted of 79 future radiographic-only progressors and 61 non-progressors from 

JoCoOA and 27 future radiographic-only progressors and 28 non-progressors from our 

previously published Osteoarthritis Initiative (OAI) study (20). There were no case or 

control overlaps between the OABC development cohort and the OAI validation cohort. 

Details of both studies have been previously published (8,21,22). All Osteoarthritis Initiative 

and JoCoOA participants provided written informed consent and the studies were approved 

by the Committee on Human Research of the Institutional Review Board (IRB) for the 

University of California San Francisco and the University of North Carolina at Chapel 
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Hill, respectively. The IRBs of the University of Oklahoma Health Sciences Center and 

Oklahoma Medical Research Foundation also reviewed and approved the present study.

In the OAI, participants had baseline and yearly follow-up knee radiographs and baseline 

buffy coat DNA available. Kellgren-Lawrence Grade (KLG) and quantitative joint space 

width (JSW) (23) were assessed by a central reading site using non-fluoroscopic fixed-

flexion knee radiographs with a Synaflexer positioning device (Synarc, Newark, CA). In 

OABC and OAI patients, all buffy coat samples were derived from the baseline visit 

blood draw. Demographic variables including age, sex, body mass index (BMI), baseline 

KLG, baseline JSW, baseline Western Ontario and McMasters pain index (WOMAC pain), 

non-steroidal anti-inflammatory drug use, opiate pain medication use, and White, African-

American, Asian-American, and Hispanic ancestry were obtained and compared among 

progressor groups.

JoCoOA samples were obtained from patients in whom radiographic progression occurred 

at both the initial and later timepoints (e.g. progression from baseline to second (T1 to 

T2), second to third (T2 to T3), or third to fourth (T3 to T4) visits). In each case, buffy 

coat samples were obtained from the visit immediately prior to radiographic progression, 

equating to 5.6±1.1 years, mean±S.D., prior to progression. In JoCoOA, fixed-flexion knee 

radiographs with a Synaflexer positioning device were graded by KLG. All participants in 

all cohorts had a baseline KLG of 2–3 in at least one knee without a history of previous 

total knee joint replacement. Demographic variables including age, sex, BMI, baseline 

KLG, baseline WOMAC pain, NSAID use, pain medication use, and Caucasian or African-

American ancestry were obtained and compared between the two progressor groups.

DNA used in this study were derived from buffy coat. In OABC development and OAI 

validation samples, DNA was previously extracted by OAI personnel, stored within the 

OAI biobank, and shipped to our laboratory for further analysis. In the JoCoOA cohort, 

buffy coat was shipped to our laboratory and DNA was extracted using a Qiagen DNEasy 

kit (Qiagen, Hilden, Germany). In all cases, 500ng of DNA was treated with sodium 

bisulfite (EZ DNA methylation kit, Zymo) and loaded onto Illumina Infinium EPIC 850k 

Methylation arrays. Arrays were imaged by the Clinical Genomics Center at OMRF.

Progression definitions

In the OABC discovery cohort, the definitions of radiographic and pain progression were the 

same as a previous biochemical biomarker study in these same patients (8). Radiographic 

progressors were defined as a longitudinal loss in the minimum joint space width (JSW) 

of at least 0.7mm from baseline to 48-month follow-up in one index knee. In each case, 

the contralateral (non-index) knee had less or no progression over the follow-up period. 

Participants with a tibial plateau rim distance of 6.5mm at baseline, or with a change 

in the rim distance of >2.0mm between baseline and follow-up were excluded due to 

inappropriate and/or unreliable radiographic positioning. Non-progressors were defined as 

those with ≤0.5mm of JSW loss from baseline to 48 months in both knees. Pain progressors 

were defined by an increase of ≥9 points at 2 or more timepoints on the Western Ontario 

McMasters (WOMAC) pain subscale (normalized to a 0–100 scale) from the 24-month 

to 60-month pain assessment. In the JoCoOA validation cohort, radiographic progression 
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was defined as an increase of ≥1 Kellegren-Lawrence radiographic grade in the index knee 

between 2 visits, nonprogressors had no evidence for progression at any study timepoint. 

In the OAI validation cohort, radiographic progression was defined similar to the OABC, 

except that 0.7mm JSW loss had to occur faster, within the first 24 months, and remain 

narrowed at the 48-month follow-up visit (20).

Data preprocessing

Statistical analysis was performed using R (v. 4.0.2). Raw .IDAT files were loaded and 

processed using the ChAMP package (v.3.14). Raw array data were first loaded and CpG 

site methylation data converted to beta values (0–1 methylation value estimate representing 

the ratio of methylated to unmethylated probe intensities at a given CpG site). Normalization 

was then performed on beta values using the champ.norm function with default options 

using a beta-mixture quantile normalization procedure. From an initial set of 865,918 

probes, the following were excluded: (1) probes with detection P≥0.01, probes targeting 

non-CpG positions, probes located on sex chromosomes, and probes with known single 

nucleotide polymorphisms within 5bp of the 3’ end of the CpG probe with minor allele 

frequency ≥1% (24) (N=158,841), leaving 707,077 CpG probes available for further 

analysis. Data were batch corrected for methylation plate and array.

Mixed peripheral blood DNA methylation analyses can be confounded by changes in 

cellular composition among study groups, as immune cell subsets have distinct epigenetic 

signatures (25). Therefore, to exclude composition as a confounder in our modeling, we 

estimated cell composition using the estimateCellCounts function of minfi R package (26), 

(v.3.15). In the development cohort, B cells were lower in radiographic-only progressors 

vs. non-progressors (4.7±2.6%, mean±S.D. vs. 6.0±3.3%, P=0.002) (Supplementary Table 

1). There were no differences in estimated cell composition in either validation cohort 

(Supplementary Tables 2 and 3). Models were generated both with and without correction 

of cell composition using surrogate variable analysis (27) via the sva package (v.3.28.0). 

This method has been previously shown to robustly correct for cell count variation and 

other batch effects in large-scale epigenomic studies (27–29). As outlined below, models 

demonstrated no differences after sva adjustment, suggesting no significant skewing of our 

findings by differences in cellular composition (Supplementary Table 4).

Model development

Data were first split into 70% development and 30% lockbox validation subsets and 

modeling performed on the development set (Figure 1). We first tested three methods 

for model development and feature selection. Elastic-net regularized generalized logistic 

models were developed using the glmnet package (v. 2.0–16) with feature selection. Models 

were tuned via 10-fold internal cross-validation. Further cross-validation was performed by 

looping random data splitting and model development for a total of 40 cycles. Models were 

then applied to the lockbox set and performance characteristics, including area under the 

receiver operator characteristic curve (AUC), diagnostic odds ratio, accuracy, sensitivity, 

specificity, and F1 score (the weighted average of precision and recall) were recorded. 

DNA methylation sites (features) selected for inclusion in each model were recorded and 

compared.
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Feature reduction and parsimonious model development

Our modeling approach used glmnet with an elastic net approach, which combines Ridge 

and LASSO regression to perform both feature selection and regularization. The resulting 

models included only those CpG sites important to discrimination of progressors vs. 

nonprogressors, pruning unnecessary features (Supplementary Table 5). The performance 

characteristics of development models (based on training, rather than test data) are presented 

in Supplementary Table 6. Models developed to discriminate ‘any’ progressors (dual + pain-

only + radiographic-only) vs. non-progressors using the entire DNA methylation dataset 

selected a mean of 14±2 CpG sites (features, mean±SEM) during development, with 13 

CpG features being chosen in at least 10 of 40 development rounds. Accordingly, we 

then reduced our dataset to include only these 13 features and derived new parsimonious 

models. Surprisingly, we were also able to derive parsimonious models for the remaining 

comparisons (dual-, pain-, and radiographic-progressors vs. non-progressors) based on these 

same 13 CpG sites; parsimonious models developed based on the top-most-frequently 

selected CpGs in each comparison were not superior to this core list of 13 CpGs. These 

newly derived parsimonious models were then tested on JoCoOA and OAI confirmation 

cohort datasets and performance tabulated.

Results

Baseline patient demographic, disease, and buffy coat composition characteristics were 
well matched. Models developed using only patient characteristics or cellular composition 
performed poorly.

Demographic and baseline clinical characteristics were generally well matched among 

various groups in both the development and confirmation cohorts (Table 1). Models 

developed using only baseline radiographic/pain data, age, sex, ethnicity, BMI, and baseline 

medication use performed poorly (accuracy 62–66%, AUC=0.49–0.68, Supplementary Table 

4). DNA methylation data from mixed buffy coat samples may be skewed by variations in 

cellular composition between groups. As direct measures of cellular composition were not 

collected in any of the cohorts studied, we estimated these values computationally (25). We 

noted a decrease in B cells in radiographic-only progressors compared to non-progressors 

within the OABC (P=0.002, Supplementary Table 1) but no group differences were seen 

in the JoCoOA nor the Osteoarthritis Initiative confirmation cohorts (Supplementary Tables 

2 and 3). Similar to demographic and clinical characteristics, models developed using 

cell composition data alone were unable to differentiate groups (Supplementary Table 4), 

suggesting no significant skewing of results owing to buffy coat composition heterogeneity. 

Methylation-based models developed after adjusting for demographic, clinical (including 

baseline pain/radiographic data and medication use), and cell composition data performed 

identically to models without covariate adjustment (detailed below).

Models developed using baseline peripheral blood DNA methylation data robustly 
discriminate future pain and radiographic progressors from non-progressors within the 
OABC.

First, we generated logistic regression models to discriminate various progressor groups 

from non-progressors. Radiographic-only vs. non-progressor models performed robustly 
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(accuracy 87±0.8%, mean±SEM, AUC=0.94±0.004, models tested on unseen lockbox data) 

(Table 2, Figure 2) and included 17±2 features (CpG sites, mean±SEM). Pain-only vs. 

non-progressors models also performed well (accuracy 89±0.9%, AUC=0.97±0.004, 13±2 

CpG sites). Dual progressor vs. non-progressors models did not perform as well (accuracy 

72±0.7%, AUC=0.79±0.006, 7±2 CpG sites). Models discriminating any progressor 

(pain, radiographic, or dual) from non-progressors performed moderately (accuracy 

78±0.4%, AUC=0.86±0.004, 14±2 CpG sites). We were not able to distinguish pain-

only from radiographic-only progressors (accuracy 58±1%, AUC=0.62±0.001); however, 

dual progressors were readily distinguishable from radiographic-only (accuracy 76±0.6%, 

AUC=0.82±0.007) and pain-only (accuracy 71±0.6%, AUC=0.79±0.007) progressors. We 

then added baseline demographic and clinical data, including age, sex, BMI, baseline joint 

space width, baseline pain (WOMAC), NSAID use, pain medication use, and/or estimated 

buffy coat cell composition to our dataset and re-developed multivariable models. None of 

these additional factors were chosen by glmnet for inclusion in models, indicating that DNA 

methylation data are stronger predictors for OA outcomes than these factors. Intriguingly, 

including baseline proteomic (serum and urine) biomarker data from previous biochemical 

biomarker studies on these same patients (8,13) also did not change modeling outcomes 

(data not shown). In a previous study, we noted improved performance in models when 

DNA methylation data were log-transformed to M values compared to untransformed beta 

values (20). However, in the present study we found no such differences (pain, radiographic, 

or pain+radiographic progressors vs. non-progressors model accuracy comparison, P=0.16, 

trend towards lower error rate in beta value-based models); therefore, beta value-based 

models were used for all analyses.

Parsimonious models retain the same discriminatory capabilities as models trained on the 
entire methylation dataset.

Next, we reduced our training dataset to the top 13 CpG sites most frequently included 

during initial model development (i.e., in ≥10 of 40 development rounds, Table 3, 

Supplementary Table 5) in ‘any progressor’ (pain, radiographic, and dual) models. We 

then re-derived parsimonious models for dual-, pain-, and radiographic-progressors using 

this reduced dataset (Table 2, Figure 2A). These parsimonious models demonstrated 

modest improvements in predictive capability compared to full models (accuracies: any 

progressor 82±0.3%, pain-only progressor 90±0.7%, radiographic-only progressor 89±0.5%, 

dual progressor 76±0.6%).

Parsimonious models trained on OABC data accurately classify future radiographic 
progressors in JoCoOA and OAI validation cohorts

Finally, we sought to validate our models on two independent datasets. First, we applied 

these models to buffy coat DNA methylation data from the JoCoOA cohort. Of note, 

both the definition of radiographic progression (≥1 radiographic Kellegren-Lawrence grade 

worsening at follow-up) and time to progression (mean 5.6 years) were different in 

this cohort than the model development cohort. We also validated these models in our 

previously published OAI methylation dataset (20). For the present analysis, we restricted 

our previous dataset to those samples run on MethylationEPIC arrays, as the previous 

generation 450k arrays did not include the necessary 13 CpG sites. Like the JoCoOA 
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cohort, the OAI cohort had slightly different progressor definitions compared to our model 

development samples (progression required at 24 months, maintained at 48 months) (Table 

1, Figure 2A,B, Figure 3). Models demonstrated similar performance when tested on 

both validation cohorts (JoCoOA: accuracy 80±0.3%, AUC=0.88±0.003, OAI: accuracy 

80±0.8%, AUC=0.89±0.002).

Discussion

The aim of this study was to evaluate whether peripheral blood-based epigenetic biomarkers 

could be used to differentiate future rapid radiographic and/or pain OA progressors from 

non-progressors using a single-timepoint baseline sample. To do this, we first determined 

genome-wide DNA methylation patterns using Illumina MethylationEPIC arrays in 554 

patients from the OABC cohort of the OAI, consisting of patients who experienced 

radiographic and/or pain progression within 48 months of blood draw, and matched non-

progressor controls. We then applied machine learning techniques to develop models to 

differentiate pain, radiographic, dual (pain + radiographic), and any (pain, radiographic, 

pain + radiographic) progressors from non-progressors. We used a generalized logistic 

modeling approach with feature reduction which allowed us to determine the subset of DNA 

methylation sites most predictive of progression status. All models were trained on a 70% 

development data split and tested on a 30% validation data split, and random development/

validation data splits followed by model development were performed in a looped fashion 

over the course of 40 development cycles (Figure 1). Then, we re-derived models based on 

a reduced dataset incorporating only the 13 CpG methylation sites most frequently selected 

during initial development. These parsimonious models were then tested on two validation 

cohorts: JoCoOA and a previously generated methylation dataset from the OAI.

Predictions based on clinical characteristics alone were not accurate. Including additional 

baseline serum and urine biomarker data from the OABC study to our models did not 

improve discrimination capability. We found parsimonious models to be roughly equivalent 

in predicting pain and/or radiographic progression within OABC data. Furthermore, the 

radiographic-prediction subset of these parsimonious models remained accurate when 

applied to the independent JoCoOA and OAI validation cohorts, despite differences in 

both OA progression definition and time-to-progression. Prediction of pain and radiographic 

progression within OABC was highly accurate, although surprisingly, we were not able 

to discriminate pain from radiographic progression. This a curious finding; it may be 

artifactual or it may reflect an underlying inflammatory process shared among early OA 

pain and radiographic progressors cohort itself, although we encountered a similar inability 

to distinguish pain-only progressors vs. radiographic-only progressors within the JoCoOA 

cohort (data not shown, only a small number of patients met these criteria: 14 pain-only and 

45 radiographic-only progressors). Also curious is our finding that dual pain+radiographic 

patients were less accurately distinguished from nonprogressors than single-domain (pain 

or radiographic) progressors. As above, this may be artifactual and related to our particular 

dataset or might suggest that dual progressors represent an independent OA phenotype/

epigenotype when compared to pain or radiographic progressors. This is supported by 

the lack of overlap in CpG sites selected for modeling of dual progressors compared to 
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single-domain progressors. This intriguing finding should be confirmed in additional cohorts 

of dual OA progressors.

This study builds on our previous pilot data modeling peripheral blood DNA methylation 

data as a predictor of radiographic progression (20) while adding several important 

additional features. First, we evaluated significantly more patients, including different OA 

phenotypes, using a newer and more complete DNA methylation array (Illumina EPIC). 

Additionally, the development cohort of our current study was performed on the same 

patients as the Phase 1 FNIH-OABC analyses, meaning that we can directly compare our 

findings to those previously published for both biochemical (8) and radiographic (9,10,30) 

models. Our models compare favorably to previously published OA predictive models. 

In the same cohort of patients, the OABC developed models to differentiate future dual 

(radiographic + pain) progressors from pain-only, radiographic-only, and non-progressors 

(8). Models based on baseline proteomics data performed relatively poorly with an AUC 

of 0.586, whereas time-integrated concentration (TIC) models comparing the change in 

biomarkers over 12 or 24 months (compared to baseline) to predict disease status at 48 

months were better, reaching AUC=0.668 without cross-validation and AUC=0.618 with 

cross-validation. No confirmation of these models in an independent cohort was performed.

Progression prediction using radiographic features has also been performed within this 

same cohort. In 2015, Eckstein and colleagues determined that central medial femorotibial 

compartment thickness loss by MRI between baseline and 12- or 24-month follow-up was 

predictive of future progression with an odds ratio of 4 (9). Similarly, in 2016 Hunter et al. 

demonstrated 24-month changes in periarticular bone area and shape were associated with 

both pain and radiographic progression at 48 months with odds ratios in the ~1.25 to 2.62 

range for each 1 S.D. increase in area or shape (10). A multivariable radiographic model 

including cartilage thickness, surface area, effusion-synovitis, Hoffa-synovitis, and meniscal 

morphology change over 24 months to predict dual pain + radiographic progression reached 

AUC=0.740 within the OABC cohort (13). A 2021 study by Hunter and colleagues 

combined TIC biochemical and radiographic biomarkers from the OABC to develop 

models to predict dual progressors vs. controls (AUC=0.680–0.724) and radiographic-only 

progressors (AUC=0.716–0.832), although similar to previous studies, TIC biomarker 

change over 24 months was used to predict outcomes at 48 months. Using a multivariate 

approach to OABC data, a 2019 study implemented a distance weighted discrimination 

linear machine learning analysis and found that progressor status was more strongly related 

to baseline MR imaging features than with either demographic/clinical variables or with 

baseline biochemical biomarkers (31).

Relatively little has been published regarding peripheral blood epigenomic or transcriptomic 

biomarkers in human OA. A 2018 analysis of publicly available blood gene expression 

profiles from a small set of OA patients and controls, identifying a 23-gene set with 

a reported accuracy of 0.971 to distinguish OA patients from controls, although no 

confirmation was performed (32). A recent study by Attur et al. developed a multivariate 

model including a 3-gene inflammatory gene expression panel from mixed peripheral blood 

samples and radiographic data to predict radiographic OA progression within 24 months, 

yielding an AUC of 0.75 with an odds ratio of 19.10 (33). This study included only 
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data from a single baseline timepoint, and the authors confirmed their findings in two 

independent cohorts, although models were not able to predict pain outcomes.

Of the 13 CpG sites included in our parsimonious models, 12 are within known genes 

or regulatory elements, but only 2 of these have previous links to OA (Table 3). ERC1 
is an antiapoptotic gene found downregulated in OA fibroblast-like synoviocytes (34). 

TRIP12 is an E3 ubiquitin ligase that complexes with tankyrase in chondrocytes; tankyrase 

inhibitors reduce surgically-induced OA in mice (35). These findings are not surprising; 

given the lack of previous epigenetic analyses of circulating immune cells in OA patients, 

we would expect that the majority of epigenetic dysregulation within immune cells or cell 

subsets would be distinct from patterns seen within joint tissues. Considering our findings, 

future pathogenesis-focused OA studies should specifically evaluate immune cell epigenetic 

dysregulation. These should focus on individual immune cell subsets, as relatively little 

pathogenic information can be gleaned from the biomarker-focused mixed buffy coat 

methylation data we have generated in the present study.

Our study has several strengths. Most importantly, we have found superior predictive 

capability for future radiographic and/or pain progression from a single baseline blood 

sample. This predictive capability appears to be valid as early as 2 years (OAI validation 

cohort) and as late as 5 years (JoCoOA validation cohort). The fact that predicted cell 

counts and baseline demographic information did not alter model performance broadens 

applicability, as does the fact that DNA processed by independent institutions demonstrated 

similar performance. Also striking was the clear distinguishability of pain-only and 

radiographic-only progressors from dual (pain and radiographic) progressors, which were 

more difficult to distinguish from non-progressor controls, suggesting a distinct epigenetic 

endophenotype in dual progressors that should be further evaluated in future studies. 

Parsimonious models we developed retained high levels of accuracy, including in validation 

cohorts, when data were reduced to a relatively small number (N=13) of CpG features. 

This suggests that our findings may be translatable to higher-throughput, inexpensive, 

sequencing-based assays rather than requiring genome-wide DNA methylation arrays.

Our analysis does have several limitations. Our development and validation cohorts were 

not ideally matched; specifically, follow-up periods and radiographic measurements differed 

between the 3 cohorts. Although this mismatch reduces the ability for us to fine-tune our 

development models, it may also be considered a strength, as accurate predictions were 

still able to be made despite these differences. We have not yet examined the predictive 

capability of baseline blood epigenetic patterns for other radiographic endpoints beyond 

joint space narrowing; future analyses should focus on radiographic markers previously 

identified as strongly predictive of progression, including synovitis (13). Furthermore, our 

study focused exclusively on knee OA outcomes, despite the likelihood that a number of 

our samples included individuals with additional joint involvement (e.g., hand, hip), which 

may also be amenable to a systemic immune epigenetic modeling approach (36). This is 

a limitation shared by most of the OA systemic biomarker studies published to date and 

should be further evaluated in future studies designed to investigate potential epigenetic 

biomarkers of multi-joint OA. A major limitation of our study (as in any biomarker study) 

is that our findings are correlative rather than reflective of underlying disease mechanisms. 
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The CpG methylation sites we identified as strongly predictive of OA progression, therefore, 

may or may not be directly related to OA pathophysiology and caution must be taken when 

interpreting these findings.

In summary, our study offers compelling evidence that peripheral blood epigenetic-based 

models may be used as baseline predictive biomarkers for future rapid progression in 

symptomatic knee OA patients. We have identified a small subset of CpG sites that appear 

to be highly correlated with both pain and radiographic progression, although we were 

unable to differentiate between the two. The AUC we describe for radiographic progression, 

confirmed in two independent validation sets, is the highest yet published for a baseline 

biomarker and is similar to the best models produced by multivariate TIC biochemical and 

radiographic biomarkers from the OABC. Our results should be applied to other large OA 

datasets to confirm validity. Additional work should be done both to translate our findings 

into an inexpensive and high-throughput clinical assay. Future studies should also evaluate 

the pathophysiological implications, if any, of epigenetic changes in individual immune 

cell subsets in OA patients. Nonetheless, our results offer hope for an easily accessible, 

blood-based single-timepoint biomarker to enrich OA clinical trials in patients likely to 

experience rapid progression, thereby improving the care of adults with knee OA.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Diagram of machine learning model development workflow.
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Figure 2: 
Performance of peripheral blood DNA methylation machine learning models to predict 

future knee OA progression. (A) Receiver operator characteristic (ROC) curves for full 

models. (B) ROC curves for parsimonious models following reduction in dataset to 13 CpG 

sites most frequently selected during full model development. (C) Relative contribution of 

individual CpG sites (features) to model predictions in 40 rounds of parsimonious model 

development (D) ROC curves for parsimonious models tested on independent datasets 

including the Johnston County OA project (JoCoOA) and a previously published OAI buffy 

coat DNA methylation dataset
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Figure 3: 
Plot of prediction confidence in radiographic-only vs. non-progressor parsimonious models 

for all development and validation samples (mean of 40 rounds of model development or 

validation). Y axis represent model confidence for prediction of progressor status, X axis 

represents individual patient samples. Blue bars are actual radiographic progressors, orange 

bars are actual non-progressors.

Dunn et al. Page 17

Arthritis Rheumatol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunn et al. Page 18

Table 1:

Participant Characteristics

Discovery cohort (OAI FNIH-OABC, n=554 individuals)

Non-progressors 
(NP, n=189)

Radiographic-only 
progressors (RP, 
n=81)

Pain-only 
progressors (PP, 
n=91)

Dual 
(radiographic + 
pain) progressors 
(DP, n=193)

Significant 
group 
differences

Age (mean±SD), years 61±9 63±8 59±9 62±9 PP vs. NP: 
P=0.02

Sex (%female) 64% 44% 63% 56% RP vs NP: 
P=0.003

BMI (mean±SD), kg/m2 31±5 31±5 31±5 31±5

Baseline KLG (mean±SD) 1.8±0.9 2.0±0.9 1.9±0.9 2.2±0.9 DP vs. NP: 
P<0.0001

Baseline JSW (mean±SD), 
mm

4.0±1.3 4.0±1.3 3.9±1.4 3.9±1.4

Baseline WOMAC pain 
(mean±SD)

12.0±16.0 14.0±19.2 14.0±17.6 13.3±16.7

NSAID use (%) 16% 23% 22% 35% DP vs NP: 
P=0.02

Pain medication use (%) 13% 10% 12% 10%

African-American 21% 10% 30% 17% RP vs NP: 
P=0.04

Asian-American 2% 0% 0% 1%

Hispanic 0% 1% 0% 2%

White 79% 79% 70% 80%

Validation cohort (JoCoOA, n=128 individuals)

Non-progressors 
(n=51)

Radiographic-only 
progressors (n=77)

Significant 
group 
differences

Age (mean±SD), years 66±9 64±8

Sex (%female) 73% 80%

BMI (mean±SD), kg/m2 34±8 36±8

Baseline KLG (mean±SD) 2.5±0.5 2.3±0.5 P=0.03

Baseline WOMAC pain 
(mean±SD)

33±20 30±20

NSAID use (%) 19% 32%

Pain medication use (%) 12% 4%

African-American 27% 47% P=0.03

White 73% 53% P=0.03

Time between blood-draw 
visit and ‘progression’ visit 
(years, mean±SD)

n/a 5.6±1.1

Validation cohort (OAI, n=55 individuals)

Age (mean±SD), years 60±8 60±8

Sex (%female) 50% 52%
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BMI (mean±SD), kg/m2 30±4 31±5

Baseline KLG (mean±SD) 2.3±0.7 1.9±0.7

Baseline JSW (mean±SD), 
mm

4.0±1.3 4.2±1.2

Baseline WOMAC pain 
(mean±SD)

17.0±5.3 21.0±4.6 P=0.004

NSAID use (%) 7% 22%

Pain medication use (%) 7% 30% P=0.04

African-American 11% 11%

White 89% 89%
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Table 2:

Model performance characteristics

Osteoarthritis Biomarkers Consortium (OABC) Discovery Cohort, Full models 707,077 CpGs available for modeling

Comparison 
groups

Accuracy 
(mean±SEM)

AUC-ROC 
(mean±SEM)

Sensitivity 
(mean±SEM)

Specificity 
(mean±SEM)

Diagnostic 
odds ratio 

(mean±SEM)

F1 score 
(mean±SEM)

Number of 
features 
(CpGs) 

included 
(mean±SEM)

Radiographic-
only vs. non-
progressor

87±0.8% 0.94±0.004 0.88±0.01 0.88±0.01 83±12 0.78±0.01 17±2

Pain-only vs. 
non-progressor 89±0.9% 0.97±0.004 0.92±0.01 0.89±0.01 120±20 0.83±0.02 13±2

Dual- vs. non-
progressor 72±0.7% 0.79±0.006 0.70±0.01 0.74±0.01 7.4±0.4 0.74±0.01 7±2

Any (pain/
radiographic/
dual) vs. non-
progressor

78±0.4% 0.86±0.004 0.78±0.004 0.78±0.01 15±1.0 0.85±0.003 14±2

Radiographic-
only vs. pain-
only

58±1% 0.62±0.01 0.54±0.02 0.60±0.01 2.2±0.2 0.51±0.02 14±3

Dual- vs. 
radiographic-
only 
progressor

76±0.6% 0.82±0.007 0.78±0.06 0.72±0.03 12±1.3 0.86±0.003 10±2

Dual- vs. pain-
only 
progressor

71±0.6% 0.79±0.007 0.74±0.006 0.76±0.03 7.8±0.7 0.84±0.003 5±1

OABC Discovery Cohort, parsimonious models 13 CpGs available for modeling

Radiographic-
only vs. non-
progressor

89±0.5% 0.94±0.003 0.83±0.01 0.91±0.004 77±11 0.81±0.01 n/a

Pain-only vs. 
non-progressor 90±0.7% 0.95±0.004 0.88±0.01 0.92±0.01 125±21 0.86±0.01 n/a

Dual- vs. non-
progressor 76±0.6% 0.85±0.006 0.75±0.01 0.78±0.01 12±0.8 0.77±0.01 n/a

Any (pain/
radiographic/
dual) vs. non-
progressor

82±0.3% 0.89±0.003 0.84±0.004 0.78±0.008 20±1.0 0.87±0.002 n/a

Applying OABC-developed parsimonious models to other independent datasets:

JoCoOA:
Radiographic-
only vs. non-
progressor:

80±0.3% 0.88±0.003 0.78±0.004 0.88±0.004 28±1 0.86±0.002 n/a

Previous OAI 
dataset:
Radiographic-
only vs. non-
progressor:

80±0.8% 0.89±0.002 0.80±0.008 0.82±0.01 20±1.4 0.80±0.005 n/a
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Table 3:

CpG sites chosen for reduced models

CpG site Chromosome Gene 
symbol

CpG 
location

CpG 
Island

Relative 
contribution 
to pain- only 
progressor 

model

Relative 
contribution 

to 
radiographic-

only 
progressor 

model

Relative 
contribution 

to dual-
progressor 

model

Relative 
contribution 
to any- (pain/
radiographic/

dual) 
progressor 

model

cg09239099 12 ERC1 TSS200 Island 0.34±0.02 0.32±0.02 0.26±0.01 0.33±0.01

cg04195161 17 ARHGAP23 1stExon S_Shelf 0.11±0.01 0.07±0.01 0.14±0.01 0.11±0.008

cg04043957 11 TNNI2 TSS1500 0.03±0.009 0.04±0.01 0.11±0.01 0.10±0.009

cg05042110 8 PKIA 5’UTR 0.08±0.008 0.12±0.006 0.09±0.005 0.08±0.004

cg08872579 1 TTC22 Body N_Shore 0.06±0.007 0.10±0.005 0.02±0.004 0.07±0.005

cg02019955 9 0.04±0.005 0.03±0.004 0.08±0.007 0.07±0.005

cg04985016 2 TRIP12 5’UTR 0.04±0.005 0.01±0.003 0.07±0.005 0.07±0.005

cg23705082 22 TBC1D22A Body 0.01±0.003 0.03±0.006 0.13±0.007 0.06±0.007

cg22064129 18 SLC14A2 TSS1500 0.03±0.006 0.03±0.006 0.05±0.007 0.04±0.006

cg01333532 16 PHLPP2 TSS1500 0.01±0.003 0.04±0.006 0.02±0.004 0.02±0.003

cg12692919 8 TSNARE1 Body N_Shore 0.16±0.02 0.10±0.007 0.01±0.002 0.02±0.003

cg01307007 19 FZR1 TSS1500 0.02±0.004 0.06±0.008 0.01±0.003 0.01±0.003

cg00715363 17 MIR548W Body 0.08±0.01 0.05±0.007 0.02±0.004 0.01±0.002
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